
Raffaele De Simone, MD, PhD
University Heidelberg, Germany

Transregional Collaborative Research Centre 125

Cognition-guided Surgery

Dept. of Cardiac Surgery, University of Heidelberg

Raffaele De Simone, MD, PhD
University Heidelberg - Germany

Sandy Engelhardt, PhD
Div. Medical and Biological Informatics - Germany

Transregional Collaborative Research Centre 125
Cognition Guided Surgery – Projects Overview

General and Visceral Surgery
- **A01**: Contextually Aware Assistance System for Minimally Invasive Surgery
 Müller / Speidel
- **A02**: Knowledge-based Navigated Liver Surgery
 Maier-Hein / Mehrabi

Cardiac Surgery
- **B01**: Knowledge-based Assistance System for Reconstructive Cardiac Valve Surgery
 De Simone / Wolf

Radiation Therapy
- **C01**: Adaptive Photon Therapy in the Treatment of Lung and Liver Tumors
 Bendl / Combs / Oelfke
- **C02**: Biological and Time Adaptive Therapy of Pancreatic Carcinoma
 Bendl / Debus / Oelfke

Platform
- **R01**: Functional Diffusion-Weighted Imaging for Tissue Analysis
 Klauß / Stietjes / Werner
- **R02**: Innovative Imaging of Tissue Perfusion
 Grenacher / Stiller / Werner
- **R03**: 4D Imaging of Blood Flow and Movement
 Beller / von Tengg-Kobligk

Core Models
- **I01**: Knowledge Modelling and Interpretation
 Dillmann / Mehrabi / Studer
- **I02**: Knowledge-Based Segmentation
 Meinzer
- **I03**: Functional Modelling
 Heuveline
- **I04**: Knowledge-based Multispectral Tissue Analysis
 Fritzsch
- **I05**: Robotics
 Müller / Wörm

Software Infrastructure

Surgeon’s Dreams

- Reconstructive Surgery (respect tissue and organs, not resect)
- Assistance (knowledge, mechanical)
- Quantitative Approach (science/teaching)
Vision of B01 in SFB 125 - Knowledge-based assistance system for reconstructive valve surgery

Pre-OP Planning

Intra-OP Decision Making

Post-OP Functional Results

Transregional Collaborative Research Centre 125
Mitral Valve Reconstruction – Quantitative Approach

Transregional Collaborative Research Centre 125
Mitral Valve Reconstruction – Quantitative Approach

Mitral Valve

Gaudi - Sagrada Familia - Barcelona

Transregional Collaborative Research Centre 125
Medical Imaging Interaction Toolkit (MITK)
Dept. of Cardiac Surgery, University of Heidelberg and
Division of Medical and Biological Informatics, DKFZ
Medical Imaging Interaction Toolkit (MITK)
Dept. of Cardiac Surgery, University of Heidelberg and
Division of Medical and Biological Informatics, DKFZ

Surgeon’s Dreams

- Reconstructive Surgery
- Assistance
- **Quantitative Approach (Science/Teaching)**
"To measure is to know"

"If you can not measure it, you can not improve it"

"In physical science the first essential step in the direction of learning is to find methods for measuring some quality connected with it. When you can measure what you are speaking about (and express it in numbers), you know something about it; but when you cannot measure it (when you cannot express it in numbers), your knowledge is of an unsatisfactory kind.

[PLA, vol. 1, "Electrical Units of Measurement", 1883-05-03]

Lord Kelvin (Sir William Thomson)
Intraoperative Valve Analysis
Subjective Visual Assessment of Anatomy by the Surgeon

Problems: variability of methods, poor reproducibility, no data to record for learning and teaching purposes

Functional analysis of leaflet segments with nerve hooks

- **Anterior leaflet (sizer)**
- **Posterior leaflet (forceps)**

Mohr-Caliper to measure chordae length
Intraoperative Valve Analysis

Kelly clamp

rigid/flexible metric ruler

calipers

Transregional Collaborative Research Centre 125
Computer-Assisted Mitral Valve Analysis (1)

Optical Tracking
Intraoperative system

NDI Polaris

Viewstation

Workstation

Dept. of Cardiac Surgery, University of Heidelberg and Division of Medical and Biological Informatics, DKFZ
Methods: Computer-Assisted Valve Analysis – Optical Tracking
Repeated Measurements on a Rapid Prototyping Heart Model

Transregional Collaborative Research Centre 125
Measurements on Swine Hearts

Transregional Collaborative Research Centre 125
CT-Scan

Transregional Collaborative Research Centre 125
Geometry of Porcine Hearts – Repeated Measurements (mean ± SD)

<table>
<thead>
<tr>
<th></th>
<th>Longitudinal annulus diameter (mm)</th>
<th>Septolateral annulus diameter (mm)</th>
<th>Anterolateral distance PM (mm)</th>
<th>Posteromedial distance PM (mm)</th>
<th>Coaption Line (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Versuch 1</td>
<td>32,85</td>
<td>26,89</td>
<td>8,79</td>
<td>11,22</td>
<td>41,30</td>
</tr>
<tr>
<td>Versuch 2</td>
<td>33,12</td>
<td>26,10</td>
<td>8,61</td>
<td>13,25</td>
<td>39,67</td>
</tr>
<tr>
<td>Versuch 3</td>
<td>31,80</td>
<td>28,15</td>
<td>4,39</td>
<td>10,63</td>
<td>34,37</td>
</tr>
<tr>
<td>Mean</td>
<td>32,59</td>
<td>27,05</td>
<td>7,26</td>
<td>11,70</td>
<td>38,45</td>
</tr>
<tr>
<td>SD</td>
<td>0,70</td>
<td>1,03</td>
<td>2,49</td>
<td>1,37</td>
<td>3,62</td>
</tr>
<tr>
<td>Expert 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Versuch 1</td>
<td>29,05</td>
<td>25,22</td>
<td>9,82</td>
<td>10,65</td>
<td>26,42</td>
</tr>
<tr>
<td>Versuch 2</td>
<td>30,64</td>
<td>26,84</td>
<td>15,82</td>
<td>13,37</td>
<td>22,04</td>
</tr>
<tr>
<td>Versuch 3</td>
<td>32,90</td>
<td>23,82</td>
<td>13,10</td>
<td>12,88</td>
<td>27,40</td>
</tr>
<tr>
<td>Mean</td>
<td>30,86</td>
<td>25,30</td>
<td>12,91</td>
<td>12,30</td>
<td>25,29</td>
</tr>
<tr>
<td>SD</td>
<td>1,93</td>
<td>1,51</td>
<td>3,00</td>
<td>1,45</td>
<td>2,85</td>
</tr>
<tr>
<td>Expert 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Versuch 1</td>
<td>38,10</td>
<td>25,55</td>
<td>6,50</td>
<td>15,99</td>
<td>34,33</td>
</tr>
<tr>
<td>Versuch 2</td>
<td>31,45</td>
<td>22,85</td>
<td>7,28</td>
<td>16,68</td>
<td>27,26</td>
</tr>
<tr>
<td>Versuch 3</td>
<td>34,21</td>
<td>23,67</td>
<td>7,91</td>
<td>16,39</td>
<td>25,78</td>
</tr>
<tr>
<td>Mean</td>
<td>34,59</td>
<td>24,02</td>
<td>7,23</td>
<td>16,35</td>
<td>29,12</td>
</tr>
<tr>
<td>SD</td>
<td>3,34</td>
<td>1,38</td>
<td>0,71</td>
<td>0,35</td>
<td>4,57</td>
</tr>
<tr>
<td>Expert 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Versuch 1</td>
<td>28,32</td>
<td>21,55</td>
<td>12,38</td>
<td>10,66</td>
<td>23,89</td>
</tr>
<tr>
<td>Versuch 2</td>
<td>29,31</td>
<td>18,61</td>
<td>7,02</td>
<td>9,11</td>
<td>22,25</td>
</tr>
<tr>
<td>Versuch 3</td>
<td>28,21</td>
<td>18,89</td>
<td>8,43</td>
<td>10,52</td>
<td>24,03</td>
</tr>
<tr>
<td>Mean</td>
<td>28,61</td>
<td>19,68</td>
<td>9,28</td>
<td>10,10</td>
<td>23,39</td>
</tr>
<tr>
<td>SD</td>
<td>0,60</td>
<td>1,62</td>
<td>2,78</td>
<td>0,86</td>
<td>0,99</td>
</tr>
<tr>
<td>Mean:</td>
<td>31,66</td>
<td>24,01</td>
<td>9,17</td>
<td>12,61</td>
<td>29,06</td>
</tr>
<tr>
<td>95% -CI</td>
<td>1,81</td>
<td>1,96</td>
<td>2,03</td>
<td>1,64</td>
<td>4,24</td>
</tr>
</tbody>
</table>

Transregional Collaborative Research Centre 125
Transregional Collaborative Research Centre 125
Transregional Collaborative Research Centre 125
Matching Ultrasound and Anatomical Measurements

Graser, De Simone et al.; Computer Assisted Annuloplasty – DGTHG 2014 - SJM Award

Transregional Collaborative Research Centre 125
Graser, De Simone et al.; Computer Assisted Annuloplasty – DGTHG 2014 - SJM Award
Conclusions

Anatomical parameters tracked by our infrared stereo camera system showed good accuracy and reproducibility.

Computational models allow a more precise quantitative assessment of mitral valve geometry.

Possible advantages of precise intraoperative sizing of anatomy
- guide the surgeon to choose the most suitable reconstruction procedure
- provide a learning tool for training surgeons
- improve outcome of mitral valve repair